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Image Parameter Design of Noncommensurate
Distributed Structures: An Application to
Microstrip Low-Pass Filters
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Abstract —The direct application of the image parameter method (IPM)
to distributed structures is suggested in order to overcome some limitations
of classical design methods for microwave filters. Several advantages are
pointed out: 1) Wider degrees of freedom are obtained using noncom-
mensurate structures. 2) The IPM can be applied directly to a microwave
structure without any use of lumped prototypes. 3) Possible technological
constraints can be easily incorporated in the design procedure. 4) Filters
designed according to the IPM can be cascaded together in order to
improve their characteristics. An application to the design of a class of
microstrip low-pass filters, which have been previously designed on a
low-frequency approximation basis, is illustrated in detail. The IPM is
shown to provide an effective control of both the passband and stopband,
leading to filters with improved characteristics, as demonstrated by the
experimental results.

I. INTRODUCTION

HE BASIC PHILOSOPHY in the design of micro-

wave filters may be regarded as consisting schemati-
cally of the following steps: 1) synthesis of a suitable
lumped prototype: 2) transformation of the lumped proto-
type into a distributed (transmission-line) prototype; and
3) transformation of the distributed prototype into a mi-
crowave structure.

The actual design procedure may not go explicitly
through each of the above steps, some of them, specifically
2) and 3), being possibly grouped together. In any case, the
microwave filter design ultimately resides on a lumped
filter synthesis because of the lack of approximation meth-
ods for general distributed networks; in fact, some trans-
formation procedure (step 2)) is needed in order to estab-
lish a mathematical link between the distributed structure
and the lumped network, for which well-established ap-
proximation theories are available. This transformation can
be either exact, as Richard’s transformation, or approxi-
mate. Both cases have some disadvantages.

In the first case, all the degrees of freedom of the
distributed structure are not fully exploited since such a
procedure results in some constraints on the microwave
filter structure. The application of Richard’s transforma-
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tion, for instance, gives rise to distributed filters consisting
of line sections of the same length. These constraints not
only limit the degrees of freedom of the microwave struc-
ture, but may also be incompatible with some technological
limitations. The synthesis procedure may end up with some
characteristic impedances which are unrealizable with a
given technology, e.g., the microstrip technology.

If an approximate transformation is used in step 2), this
will affect the actual behavior of the microwave filter. An
additional source of approximation is involved in the trans-
formation from distributed to microwave structures (step
3)). These approximations may limit the bandwidth of the
filter and /or, in general, its electrical performance.

The above disadvantages can be removed by adopting a
design procedure operating directly on the microwave
structure. Lacking a general approximation theory for dis-
tributed noncommensurate structures, it is very advanta-
geous to adopt the image parameter method (IPM).

The IPM, as is known, is not an exact procedure and
does not provide an a priori knowledge of the performance
of the filter when it is terminated by resistances. Moreover,
its application requires a good deal of cut and try. In the
design of lumped filters, the insertion-loss method is there-
fore certainly preferable.

Contrary to the insertion-loss method, however, the IPM
can be applied directly to a distributed or microwave
structure without any considerations of lumped prototypes,
so that the above-mentioned limitations can be, in princi-
ple, eliminated. Strangely enough, in spite of the fact that
the image viewpoint is a wave viewpoint, this method has
been generally applied only to the design of lumped-ele-
ment filters [1]. On the contrary, this method is, in our
opinion, very attractive for the design of microwave filters.
By this technique, the reliability of the design resides only
on the accuracy of the modeling of the microwave struc-
ture, not on the transformation from a lumped to a distrib-
uted prototype. In addition, because of the greater flexibil-
ity, the technological constraints can be easily incorporated
in the design procedure. Finally, cut and dry problems,
which could have discouraged the use of the IPM in the
past, can now be easily managed thanks to modern com-
puting facilities. In most cases, the design procedure can be
implemented on a desk-top computer.
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ances and imége propagation constants are given by »
Zy= "/\/1—97Z
Zy = r//‘/ﬁ
coshy = ¢y, +(r,/1,) 82, (2)
where ) '
A=1+rt,/(Ft,)
B=1+rtz,/r,
t,= tanh(7,;s)
t,= tanh(7s)
,;=cosh(27,s)
5y = sinh(2 T,8)

€)

@)
and s is the complex radian frequency. Because of the
lossless character of the cell, the frequency axis can be
subdivided into passbands and stopbands where the image
impedances are purely real or imaginary, respectwely Cor-
respondingly, the image propagation constant is imaginary
in the passbands and real (apart from a constant imaginary
term) in the stopbands. The cutoff frequencies are obtained
from the following transcendéntal equations: ‘

ptan( 2//1,)tan( -Z—f/f/) -1 (sa)

ptan( 3.1/7, ] +tan| gf/f,) 0 (sb)

sin(nf/f,) =0 (5¢)
where
| fi=1/(4m) (6)
and
p= r(/rs (7)

is the impedance ratio of the cell. The graphical solutions
of (5a) and (5b) are given in Fig. 3 (a) and (b) for the two
cases f, < f, and f,> f,. The roots of (5¢) are obviously
f=mf, (m=1,2,...).

Because of the distributed character of the cell

frequency behavior is a complicated function of the param--

eters of the cell itself. In any case, the following general
properties can be deduced. :

1) A passband is always located next to the zero
frequency and extends up to the first cutoff frequency fas
which is given by the first root of (5a).

2) For f, < f,, thus 7,> 7, (Fig. 3(a)), the second cutoff
frequency f.,, i.e., the upper bound of the first stopband, is
given by the flI‘St root of (5b) and f, < f,, < f.

3) For f, > f, (Fig. 3b), the second cutoff frequency f,,
is equal to f; (first root of (5¢)).

4) Fig. 3(a) and (b) shows that the stopband width
increases with increasing impedance ratios p. In the par-

ticular case p =1 (r, = r,), explicit expressions for the cutoff

‘ (b)
Fig. 3. Graphical solution for the cutoff frequencies for (a) f, < f; and
®) f>fr-

frequencies are obtainable from (5) as follows:

fa=FS/ i+ 1)

_{2fa forf;<f,
fcz—{fl’ for f,> f;’

The maximum percent stopband width 2(f,, — £.,)/(f.» +
f.1) is, therefore, 67 percent and is obtained for f, < f,. It is
interesting to note that this bandwidth is independent of f,
and f, as long as f, < f; and only for p=1. Wider stop-

band widths can be obtained for hlgher p valdes. For
p <1,f,, is always less than 2 fc1

5) Some peculiarities occur in the commensurate case
f, = f,. In the noncommensurate case, in fact, the image
attenuation a = Re(y) has poles located at multiples of f
these poles correspond to the stub length being an odd
multiple of a quarter of wavelength and, obviously, are
located within the stopbands. For f, = f;, on the contrary,
the image attenuation is always finite. Nevertheless, when
the cell is terminated by resistances, transmission zeros
occur at f =mf, (m=1,2,...). This is due to the fact that
the image impedance Z; has poles at these frequencies.

- Transmission zeros are obtained, in fact, either for a =0

or for a finite and Z;, =co. These two cases correspond,
as can be easily demonstrated, to the interaction and
modal transmission zeros, respectively, as discussed in [4].

It must furthermore be observed that for f, = f, the
cutoff frequencies are only those corresponding to the
roots of (5a), which reduces to

an2<%f'/,g) ~1/p.

The cutoff frequencies f; and f,, are symmetncally located
with respect to f,= f,. In particular, for p =1, it results
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Fig. 1. (a) The distributed filter prototype and (b) the microstrip filter
geometry.

In this paper, we show the application of the IPM to the
design of a class of distributed low-pass filters. These filters
were previously designed on a low-frequency approxima-
tion basis [2], [3], which did not allow control of the
stopband behavior. The IPM, on the contrary, is shown to
provide a control of both the passband and stopband
behavior of the distributed prototype, leading to filters
with improved overall characteristics, as also demonstrated
by the experimental results.

II. TuE FILTER STRUCTURE

In a previous work [2], it has been shown that low-pass
filters with an elliptic-function response can be designed
using the distributed prototype of Fig. 1(a). A" low-
frequency approximation was used to reduce the design
procedure to the synthesis of an equivalent lumped proto-
type. In this manner, excellent passband behavior and high
cutoff rates were obtained [3]; but, because of the ap-
proximation involved, no control of the stopband behavior
was possible. The IPM can be used to overcome this
limitation.

In the practical realization of Fig. 1(a) as a microstrip
filter, it is convenient to reduce discontinuities at the
connections between lines and stubs by imposing at each
connection the equality of two of the three characteristic
impedances. With reference to the notation of Fig. 1(a),
one of the following conditions is imposed:

R,;, 1=R,,; (L condition) (1a)

or
R, .= R,,,. (F condition) (1b)

or
R,;=R,; (R condition) (1c)

i=12,...,n+1, where Ry=R,, . ,=R, are the char-
acteristic impedances of the feeding lines.

Conditions (1a) or (1¢) correspond to the stub having the
same characteristic impedance as one of the adjacent lines
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(a) Reduction of Fig. 1(a) into the cascade of elementary cells.
(b) The elementary cell.

Fig. 2.

and have been adopted in [2] and [3]. The consideration of
(1b) generalizes the geometry of the microstrip filter as
sketched in Fig. 1(b): its application, as will be shown later
on, permits higher impedance ratios between lines and
stubs to be obtained so as to increase the filter stopband.
For the sake of clarity, in the sketch of Fig. 1(b), the three
conditions (1) are imposed in the same order to the first
three stubs.

Classical synthesis methods applied to the distributed
prototype of Fig. 1(a) lead to commensurate structures. In
such cases, the characteristic impedances are chosen as the
free parameters of the synthesis. In the present case, how-
ever, the constraints (1) on the characteristic impedances
render these methods inapplicable.

As is known, the IPM of filter design requires a number
of elementary cells to be cascaded together in order to
obtain the prescribed filter performance. By splitting each
internal stub into the parallel of two stubs of the same
length, and each line section into a series of two line
sections with the same characteristic impedance, the scheme
of Fig. 1(a) is converted into that of Fig. 2(a): this scheme
consists of the cascade of 2n elementary cells of the type
shown in Fig. 2(b). The IPM representation of the elemen-
tary cell is discussed in the next section, while the filter
design procedure is presented in Section IV.

It is worth noting that a planar approach [4], [5] would
be the most appropriate technique, particularly at high
frequencies, to model the microstrip structure of Fig. 1(b).
For the purposes of the present paper, however, a transmis- .
sion-line model is adopted, as it is much simpler and,
therefore, more suitable to demonstrate the effectiveness of
the method. In any case, once the prototype of Fig. 1(a)
has been designed, a planar approach has to be used to
accurately transform Fig. 1(a) into Fig. 1(b)

III. IMAGE PARAMETER CHARACTERIZATION OF THE
ELEMENTARY DISTRIBUTED CELL

The elementary cell of Fig. 2(b) is characterized in terms
of four parameters, namely two characteristic impedances
r, and r, and two delay times 7, and 7. Its image imped-
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Image impedances of the elementary cell versus the normalized
frequency for (a) p =1 and (b) p=0.5.

Fig. 4.

fa=1./2.f,= 3fd For a given p, the commensurate cell
provides the maximum stopband width, but the image
attenuation is limited; as f, is made different from f,, the
stopband is split into two stopbands separated by a pass-
band.

6) In the limit of zero frequency, the image impedances
tend to the same value

K=1lim,_,Z,=1lim; oZ;

=1 [1+(rm) /(rm)] 72 (8)

To establish a design procedure for low-pass filters, it is
convenient to characterize the elementary cell in terms of
the first cutoff frequency f,, the impedance level K, the
first transmission zero frequency f,, and the impedance
ratio p. In order to compare the image behavior of differ-
ent cells, the same values of the cutoff frequency f,, and
impedance level K are assumed. In this mannner, the
remaining two parameters f, and p can be used to char-
acterize the image properties of the cells.

From now on, we will consider the image impedances as
normalized with respect to their zero frequency value K,
and the frequencies with respect to the cutoff frequency f,.
A caret will be used to indicate normalized quantities. In
order to simplify the notation, f, will be simply indicated

as f.
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Image attenuation of the elementary cell versus the normalized
frequency (a) for p =1 and (b) p = 0.5

Fig. 5.

The passband behavior of the normalized image imped-

ances Z ;- and Z,; and of the image attenuation a = Re(y)
of the elementary cell are shown in Figs. 4 and 5 versus the
normalized frequency f for different values of the trans-
mission zero frequency f and the impedance ratio p.

It is noted that, as the cutoff frequency is approached,
the image impedance at the line end Z; tends to zero,
while the image impedance at the stub end Z;, goes to
infinity. Because of the different behaviors of Z; and Z;,
near f,, contiguous elementary cells have to be cascaded as
in Fig. 2(a), i.e., in reversed position, in order that the
matching condition of the filter is guaranteed in the pass-
band.

As the transmission zero frequency f,, thus the stub
length, is varied, only Z,, is changed appreciably, while Z,,
remains practically unchanged. It could be further shown
that both Z;, and Z are slightly dependent on p. Because
of these properties, the connection between different ele-
mentary cells gives rise to very small mismatchings, even if
the image impedances are not exactly coincident.

Different behaviors of a are obtained depending on the
values of p and fs As previously noted, higher p values
permit wider stopbands. Fig. 5 shows that, as long as f; is
less than a critical value, a pole of « is located in the first
stopband. As stated in point 5) of the Erewous discussion,
this critical value is nothing but f, As f, is raised above f,,
the first stopband is reduced and the pole of a is located in
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a second stopband. For f, equal to f,, no pole of a occurs.

It is now possible to put into evidence the main dif-
ferences between the classical IPM application to lumped
filters and the present one. In the classical IPM

1) each cell has a finite number of passbands and
stopbands;

2) all the cells to be cascaded have the same cutoff
frequency and the same location of passbands and
stopbands;

3) the image impedances of adjacent cells are exactly
coincident at all frequencies;

4) the filter behavior can be calculated in terms of
image parameters both in the passband and in the
stopband; in the case of low-pass filters, the latter
extends up to infinity.

In the present application of the IPM

1) each cell has an infinite number of passbands and
stopbands;

2) all the cells have the same fundamental cutoff
frequency f,, but the higher cutoff frequencies are
generally different;

3) the image impedances of adjacent cells are not ex-
actly coincident at all frequencies;

4) the filter behavior can be computed in terms of
image parameters of the constituting cells only in
the (first) passband and in the first part of the
stopband; at higher frequencies, where some cells
are in a passband and some others in a stopband,
the filter must be characterized through the compu-
tation of the scattering parameter s,;.

IV. DErsiGN PROCEDURE

The filter structure of Fig. 1(a) is built up by cascading a
number of elementary cells individually image-matched in
the passband. In doing this, three types of conditions must
be imposed to the elementary cell parameters in order to
satisfy the cascade constraints, the impedance constraints
(1), and the matching of the cells:

A. Cascadability

In order that Fig. 2(a) could be reduced to Fig. 1(a), the
equality must be imposed between the line characteristic
impedances of two cells connected by the line ends and,
similarly, between the stub delay times of two cells con-
nected by the stub ends

o 1= s i=1,2,...,n (9a)
T30 =T, 21415 i=1,2,...,n—1. (9b)
B. Impedance Constraints
The application of conditions (1) yields
ra=Ry or =Ry rp=ry (10a)
for the first stub
(’},2;//”s,21+1) =2 O T2, =T
or (75,// s 20e1) =Ti20515 i=12,---,n=1 (10b)

for the internal stubs, and

rs,Zn

for the last stub.

=Fa, O F,,=Ry or r,,=R, (10c)

C. Image- Matching

Cells with equal (or as close as possible) image im-
pedances must be cascaded together. This requires that all
the cells have the same cutoff frequency f, and the same K

fc,1=fc,t+1’ i=172a"' ’2}7_1 (113.)
K =K., i=12---21-1.  (1b)

We, therefore, have to impose 7n —2 conditions on the
2n elementary cells. Since each cell is characterized by four
parameters, the free parameters of the synthesis procedure
are 8n —(Tn —2) = n +2. Among these are the filter cutoff
frequency f, and the impedance level K. When these
quantities have been fixed for the entire filter structure, »
free parameters are left to the design procedure, which is
described thereafter.

As the passband behavior of the filter is automatically
guaranteed by the IPM itself (apart from mismatchings at
the band edges due to resistive terminations), the classical
IP design procedure consists of cascading a number of cells
to obtain the required stopband performance. This proce-
dure is justified by virtue of the following properties.

1) The filter image attenuation a equals the sum of the
individual image attenuations, which are generally known
by tables or graphs.

2) For high attenuations, |s,, | is well approximated by
~ « (using dB).

Also in the present case, the filter can be designed on the
basis of the individual a’s, plotted in Fig. 5. Since the filter
possesses n degrees of freedom, »n transmission zeros out
of n+1 can be chosen to optimize the stopband behavior.

The design procedure can be carried out automatically
on a computer and consists of the following steps.

1) Choose an initial set of n transmission zeros in the
stopband.

2) Solve the system of equations (9)—(11) to determine
the (n + 1)th zero and the filter structure.

3) Analyze the filter to compute |s,, |.

4) Change the frequency location of the »n transmission
zeros according to some optimization strategy and go to
step 2) until the stopband requirements are satisfied.

In the case of low-order filters (1 < 3), the procedure can
be implemented very casily on a desk-top computer and
run in a few seconds. It is worth noting that, contrary to
the classical application of the IPM, the approximation
|s,1|= — a is not used, but |s,;| is computed exactly from
the filter parameters.

We conclude this section with some remarks about the
choice of the value of the impedance level K. As could be
easily seen, the zero frequency attenuation is always zero
even if K+ R,. If K= R, a maximally flat response is
obtained, but K values different from R, may also be
chosen. This possibility is generally excluded for lumped
filters, but, in the present case, it can be usefully adopted
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Fig. 6. Attenuation behavior of a fifth-order filter.

in order to improve the stopband behavior and /or render
the component values more favorable for the practical
construction of the filter. This is paid, of course, in terms
of a higher passband attenuation. It is found that, for
K > 0.6 R, the passband attenuation is generally lower
than 1.5 dB. The possibility of using K values different
from R, depends on the characteristics of the distributed
filters which seem to have intrinsically better performances
than lumped-element filters.

For the sake of clarity, the next section illustrates in
detail the features of the synthesis of some fifth-order
filters. These filters correspond to the case of n =2; thus,
they are composed of four elementary cells and have three
transmission zeros. Although the order of a distributed
filter is somewhat arbitrary, we classified these filters by
analogy with elliptic filters [2]; thus, the order M is given
by 2n+1.

V. FI1rTH-ORDER FILTERS (n = 2)

The attenuation behavior of a fifth-order filter is sche-
matically shown in Fig. 6. The filter possesses three trans-
mission zeros f1 < f, < f, which determine the stopband
characteristics in terms of the minimum attenuation 4,
and the relative bandwidth B= B /f.. A, is the maximum
passband attenuation.

The filter is composed of 2n = 4 elementary cells. Fol-
lowing the procedure outlined in the previous section, we
choose f1 and f3 as the free parameters and apply (9)—(11)
to determine f, and the quantities R,, 7, (i=123), R,
7, (i=1,2) defining the filter structure. An optimization
procedure is then applied to obtain an equiripple stopband
response. In practice, this procedure simply consists in
determining, through (9)-(11), for each given f3, the value
of f1 such that an equiripple response is obtained.

This procedure has been applied to two different classes
of fifth-order filters, corresponding to two different choices
in (1). The first class, which will be denoted as RLL, is
obtained imposing conditions (1¢), (1a), (1a) at the three
connections between the four cells, while the second class,
which will be denoted as RFR, results from the application
of (1¢), (1b), (1c). The corresponding microstrip geometries
are shown in the insets of Figs. 9 and 10, respectively.

The results of the optimization procedure for the two
classes are summarized in Figs. 7 and 8, respectively, where
fi, B, and A, are plotted versus f; It is seen that, as the
third transmission zero f; is increased, wider stopbands are
obtained in both cases, at the price of lower stopband
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Fig. 7. Characteristics of optimized RLL filters versus the third trans-
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Fig. 8. Same as Fig, 7, but for RFR filters.

attenuations. The comparison between the two figures
shows the substantially wider stopbands of the RFR filters.
The component elementary cells of RLL filters, in fact,
have p values typically less than unity. As a consequence,
as discussed in Section III, the stopband cannot exceed
unity. The use of condition (1b) in RFR filters, on the
contrary, permits higher p values to be attained so that, as
shown in Fig. 8, this limitation is removed. The peculiar
discontinuous behavior of the bandwidth B of RFR filters
is due to the occurrence of additional transmission zeros
for specific values of f3 These higher order transmission
zeros correspond to stubs being 3\ /4 long, and are located
at 3f 1Y 3f 2°

Some low-pass filters designed according to this proce-
dure have been fabricated in a microstrip configuration
using an alumina substrate 0.635 mm thick and with
dielectric permittivity €, =10.

The theoretical and experimental attenuvation of an RLL
filter is shown in Fig. 9 in the frequency range 2-14 GHz.
Theoretical values have been computed through a planar
analysis. The filter has been designed with a cutoff
frequency f, =6 GHz, and with K =50 @, corresponding
to the feeding lines’ impedance. It can be noted that the
filter has a very high cutoff rate.

An example of a RFR filter is shown in Fig. 10. This
filter has been designed with a cutoff frequency of 4 GHz
and with an impedance level K =0.8R, (Ry=50 ©). A
very wide stopband, extending up to ~ 9.5 GHz, is
observed. It is worth specifying that such wide stopbands
in this type of filter are obtained by virtue of the high p
values of the central cells of the prototypes, thus, of the
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Fig. 9. Theoretical (planar analysis, dashed line) and measured (con-
tinuous line) attenuation of a microstrip RLL filter.

f (GHz)

Fig. 10. Theoretical (planar analysis, dashed line) and measured (con-
tinuous line) attenuation of a microstrip RFR filter.

low impedances of the central stub. In a 50-& system, R,
values are typically as low as 10-20 {. In the microstrip
realization of these filters, it is, therefore, convenient to use
parallel stubs, as shown in the inset of Fig. 10. In any case,
as the widths of the stubs are generally not negligible, the
dimensions are to be adjusted using a planar model analy-
sis of the structure [5].

VL

The direct application of the IPM to distributed struc-
tures has been suggested in order to overcome some limita-
tions of classical design methods for microwave filters.
Several advantages can be obtained.

1) The IPM permits the design of noncommensurate
distributed structures, while many classical methods lead to
commensurate structures; thus, they do not utilize all their
degrees of freedom.

2) The IPM can be applied directly to the microwave
structure without any explicit or implicit use of lumped
prototypes. This avoids errors or approximations in the
transformation of the prototype into the microwave filter.

CONCLUSIONS

3) Since both characteristic impedances and delay times
are used in the design, possible technological limitations,
particularly on the characteristic impedances, can be incor-
porated in the design procedure.

4) Filters designed according to the IPM are internally
matched in the passband; thus, they can be cascaded
together in order to improve their characteristics.

To illustrate the features of the method and demonstrate
its effectiveness, an application to the design of two classes
of low-pass microstrip filters has been shown. Obviously,
many other classes of filters can also be designed by simply
removing or replacing some of the conditions used in the
present application, namely, impedance constraints, cascade
constraints, or the coincidence of the cutoff frequencies of
the elementary cells. This would give additional degrees of
freedom to the design.

It is finally worth observing that the application of the
IPM is made very easy by modern computing facilities. In
the examples presented, the design procedure has been
implemented on a desk-top computer; the design of a
fifth-order low-pass filter requires no more than a few
seconds.
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