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Image Parameter Design of Noncommensurate
Distributed Structures: An Application to

Microstrip Low-Pass Filters
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,Mvtruct —The direct application of the image parameter method (1PM)

to distributed structures is suggested in order to overcome some limitations

of c~assical design methods for microwave filters. Several ad~antages are

pointed out: 1) Wider degrees of freedom are obtained using noncom-

nrensurate structures. 2) The 1PM can be applied directly to a microwave

structure without any use of lumped prototypes. 3) Possible technological

constraints can be easily incorporated in the design procedure. 4) Filters

designed according to the 1PM can be cascadedtogether br order to
improve their characteristics. An application to the design of a class of

microstrip low-pass filters, which have been previously designed on a

low-frequency approximation basis, is illustrated in detail. The 1PM is

shown to provide an effective control of both the passband and stopband,

leading to filters with improved characteristics, as demonstrated by the

experimental results.

I. INTRODUCTION

T HE BASIC PHILOSOPHY in the design of micro-

wave filters may be regarded as consisting schemati-

cally of the following steps: 1) synthesis of a suitable

lumped prototype: 2) transformation of the lumped proto-

type into a distributed (transmission-line) prototype; and

3) transformation of the distributed prototype into a mi-

crowave structure.

The actual design procedure may not go explicitly

through each of the above steps, some of them, specifically

2) and 3), being possibly grouped together. In any case, the

microwave filter design ultimately resides on a lumped

filter synthesis because of the lack of approximation meth-

ods for general distributed networks; in fact, some trans-

formation procedure (step 2)) is needed in order to estab-

lish a mathematical link between the distributed structure

and the lumped network, for which well-established ap-

proximation theories are available. This transformation can

be either exact, as Richard’s transformation, or approxi-

mate. Both cases have some disadvantages.

In the first case, all the degrees of freedom of the

distributed structure are not fully exploited since such a

procedure results in some constraints on the microwave

filter structure. The application of Richard’s transforma-
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tion, for instance, gives rise to distributed filters consisting

of line sections of the same length. These constraints not

only limit the degrees of freedom of the microwave struc-

ture, but may also be incompatible with some technological

limitations. The synthesis procedure may end up with some

characteristic impedances which are unrealizable with a

given technology, e.g., the microstrip technology.

If an approximate transformation is used in step 2), this

will affect the actual behavior of the microwave filter. An

additional source of approximation is involved in the trans-

formation from distributed to microwave structures (step

3)). These approximations may limit the bandwidth of the

filter and/or, in general, its electrical performance.

The above disadvantages can be removed by adopting a

design procedure operating directly on the microwave

structure. Lacking a general approximation theory for dis-

tributed noncommensurate structures, it is very advanta-

geous to adopt the image parameter method (1PM).

The 1PM, as is known, is not an exact procedure and

does not provide an a priori knowledge of the performance

of the filter when it is terminated by resistances. Moreover,

its application requires a good deal of cut and try. In the

design of lumped filters, the insertion-loss method is there-

fore certainly preferable.

Contrary to the insertion-loss method, however, the 1PM

can be applied directly to a distributed or microwave

structure without any considerations of lumped prototypes,

so that the above-mentioned limitations can be, in princi-

ple, eliminated. Strangely enough, in spite of the fact that

the image viewpoint is a wave viewpoint, this method has

been generally applied only to the design of lumped-ele-

ment filters [1]. On the contrary, this method is, in our

opinion, very attractive for the design of microwave filters.

By this technique, the reliability of the design resides only

on the accuracy of the modeling of the microwave struc-

ture, not on the transformation from a lumped to a distrib-

uted prototype. In addition, because of the greater flexibil-

ity, the technological constraints can be easily incorporated

in the design procedure. Finally, cut and dry problems,

which could have discouraged the use of the 1PM in the

past, can now be easily managed thanks to modern com-

puting facilities. In most cases, the design procedure can be

implemented on a desk-top computer.
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antes and image propagation constants are given by

ZII = r,@Li

Z1~ = r,/JTF

coshy = Czl + (rl/r, ).s2[t. (2)

where

A =1 + r,t,/(r/l)

B =1 + r,tlt,/r~ (3)

t,= tanh ( 7/S )

t.= tanh(7,s)

C2, = Cosh (2 ‘r,s )

S2, = sinh(2 ~ls) (4)

and s is the complex radian frequency. Because of the

lossless character of the cell, the frequency axis can be

subdivided into passbands and stopbands, where the image

impedances are purely real or imaginary, respectively. Cor-

respondingly, the image propagation constant is imaginary

in the pasibands and real (apart from a constant imaginary

term) in the stopbands. The cutoff frequencies are obtained

from the following transcendental equations:

‘tan(:f/fs)’an(;f/fJ=l

@an(ff/f$)+tan(if4=0 “b)

(5a)

sin ( 7rf/fl) = O (5C)

where

f, =V(47/) (6)

and

P = rl/r8 (7)

is the impedance ratio of the cell. The graphical solutions

of (5a) and (5b) are “given in Fig. 3 (a) and (b) for the two

cases f, <j, and f, > fl. The roots of (5c) are obviously

f=mf[ (m=l,2,...).
Because of the distributed character of the cell, its

frequency behavior is a complicated function of the param-

eters of the cell itself. In any case, the following general

properties can be deduced.

1) A passband k always located next to the zero

freqpency and extends up to the first cutoff frequency ~C1,

which is given by the first root of (5a).

2) For & < fl, thus q > r[ (Fig. 3(a)), the second cutoff

frequency fc2, i.e., the upper bound of the first stopband, is
given by the first root of (5b) and ~~< fc2 < fh

3) For f, > f, (Fig. 3b), the second cutoff frequency fcz

is equal to f, (first root of (5c)).

4) Fig. 3(a) and (b) shows that the stopband width

increases with increasing impedance ratios p. In the par-

ticular case p = 1 (r. = rl), explicit expressions for the cutoff

(a)

(b)

Fig. 3. Graphical solution for the cutoff frequenciesfor (a) f. z A and
(b) f,>fi.

frequencies are obtainable from (5) as follows:

fcl = fsff/(f. + fl)

(

Zfcl ~ for f.< f,

“2= fl for f,> f{”

The maximum percent stopband width 2( fc2 – fcJ/( fc2 +

fcl) is, therefore, 67 percent and is obtained for f. < f,. It is
interesting to note that this bandwidth is independent off,

and f, as long as f. <f, and only for p =1. Wider stop-

band widths can be obtained for higher p values. For

p <1, fc2 is always less than 2ft..

5) Some peculiarities occur in the commensurate case

f,= fp In the noncommensurate case, in fact, the image
attenuation a = Re(y) has poles located at multiples of f,:

these poles correspond to the stub length being an odd

multiple of a quarter of wavelength and, obviously, are

located within the stopbands. For f,= fl, on the contrary,

the image attenuation. is always finite. Nevertheless, when

the cell is terminated by resistances, transmission zeros

occur at f = mf~ (m =1,2,...). Thk is due to the fact that

the image impedance Z1, has poles at these frequencies.

Transmission zeros are obtained, in fact, either for a = co

or for a finite and Z1, = cc. These two cases correspond,

as ,can be easily demonstrated, to the interaction and

modal transmission zeros, respectively, as discussed in [4].

It must furthermore be observed that for f.= fl, the

cutoff frequencies are only those corresponding to the

roots of (5a), which reduces to

()tan2 ;f/f, = l/p.

The cutoff frequencies fcl and fc2 are symmetrically located

with respect to fl = f,. In particular, for p =1, it results
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Fig. 1. (a) The distributed filter prototype and (b) the microstrip filter
geometry.

In this paper, we show the application of the 1PM to the

design of a class of distributed low-pass filters. These filters

were previously designed on a low-frequency approxima-

tion basis [2], [3], which did not allow control of the

stopband behavior. The 1PM, on the contrary, is shown to

provide a control of both the passband and stopband

behavior of the distributed prototype, leading to filters

with improved overall characteristics, as also demonstrated

by the experimental results.

II. THE FILTER STRUCTURE

In a previous work [2], it has been shown that low-pass

filters with an elliptic-function response can be designed

using the distributed prototype of Fig. l(a). A low-

frequency approximation was used to reduce the design

procedure to the synthesis of an equivalent lumped proto-

type. In this manner, excellent passband behavior and high

cutoff rates were obtained [3]; but, because of the ap-

proximation involved, no control of the stopband behavior

was possible. The 1PM can be used to overcome this

limitation.

In the practical realization of Fig. l(a) as a microstrip

filter, it is convenient to reduce discontinuities at the

connections between lines and stubs by imposing at each

connection the equality of two of the three characteristic

impedances. With reference to the notation of Fig. l(a),

one of the following conditions is imposed:

Rl, i_l=R,, i (L condition) (la)

or

R[, i_l = R,, i (F condition) (lb)

or

R,, i= Rl, i (R condition) (lC)

i=~z
7 >. ... n +1, where R,. = RI ~+4= R. are the char-

acteristic impedances of the feeding lines.

Conditions (la) or (lc) correspond to the stub having the

same characteristic impedance as one of the adjacent lines

1 2 . . . . . . . . . 2n

(a)

-_/

r~, TS

Az—
IL

z
Is

(b)

Fig. 2. (a) Reduction of Fig. l(a) into the cascadeof elementary cells.
(b) The elementarycell.

and have been adopted in [2] and [3]. The consideration of

(lb) generalizes the geometry of the microstrip filter as

sketched in Fig. l(b): its application, as will be shown later

on, permits higher impedance ratios between lines and

stubs to be obtained so as to increase the filter stopband.

For the sake of clarity, in the sketch of Fig. l(b), the three

conditions (1) are imposed in the same order to the first

three stubs.

Classical synthesis methods applied to the distributed

prototype of Fig. l(a) lead to commensurate structures. In

such cases, the characteristic impedances are chosen as the

free parameters of the synthesis. In the present case, how-

ever, the constraints (1) on the characteristic impedances

render these methods inapplicable.

As is known, the 1PM of filter design requires a number

of elementary cells to be cascaded together in order to

obtain the prescribed filter performance. By splitting each

internal stub into the parallel of two stubs of the same

length, and each line section into a series of two line

sections with the same characteristic impedance, the scheme

of Fig. l(a) is converted into that of Fig. 2(a): this scheme

consists of the cascade of 2 n elementary cells of the type

shown in Fig. 2(b). The 1PM representation of the elemen-

tary cell is discussed in the next section, while the filter

design procedure is presented in Section IV.

It is worth noting that a planar approach [4], [5] would

be the most appropriate technique, particularly at high

frequencies, to model the microstrip structure of Fig. l(b).

For the purposes of the present paper, however, a transmis-

sion-line model is adopted, as it is much simpler and,

therefore, more suitable to demonstrate the effectiveness of

the method. In any case, once the prototype of Fig. l(a)

has been designed, a planar approach has to be used to

accurately transform Fig. l(a) into Fig. l(b)

III. IMAGE PARAMETER CHARACTERIZATION OF THE

ELEMENTARY DISTRIBUTED CELL

The elementary cell of Fig. 2(b) is characterized in terms

of four parameters, namely two characteristic impedances

r[ and r, and two delay times T, and ~~. Its image imped -
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Fig. 4. Image impedancesof the elementary cell versus the normalized

frequency for (a) p =1 and (b) p = 0.5.

f,, = f,/2fc2 = Sf.1. For a given p, the commensurate cell
provides the maximum stopband width, but the image

attenuation is Iimited; as f, is made different from fl, the

stopband is split into two stopbands separated by a pass-

band.

6) In the limit of zero frequency, the image impedances

tend to the same value

K = limf ~ ~ZIl = limf ~ OZIS

= ~/[1 + (~/L) ArJl)] -1’2.
(8)

To establish a design procedure for low-pass filters, it is

convenient to characterize the elementary cell in terms of

the first cutoff frequency fcl, the impedance level K, the

first transmission zero frequency f,, and the impedance

ratio p. In order to compare the image behavior of differ-

ent cells, the same values of the cutoff frequency fcl and

impedance level K are assumed. In this mannner, the

remaining two parameters f. and p can be used to char-

acterize the image properties of the cells.

From now on, we will consider the image impedances as

normalized with respect to their zero frequency value K,

and the frequencies with respect to the cutoff frequency fc.

A caret will be used to indicate normalized quantities. In

order to simplify the notation, fcl will be simply indicated

as fc.
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Fig. 5. Image attenuation of the elementary cell versus the normalized

frequency (a) for p =1 and (b) p = 0.5

The passband behavior of the normalized image imped-

ances ZI$ and ~1, and of the image attenuation a = Re(y)

of the elementary cell are shown in Figs. 4 and 5 versus the

normalized frequency ~ for different values of the trans-

mission zero frequency ~, and the impedance ratio p.

It is noted that, as the cutoff frequency is approached,

the image impedance at the line end ZIi tends to zero,

while the image impedance at the stub end ZI~ goes to

infinity. Because of the different behaviors of ZII and ZI~

near f,, contiguous elementary cells have to be cascaded as
in Fig. 2(a), i.e., in reversed position, in order that the

matching condition of the filter is guaranteed in the pass-

band.

As the transmission zero frequency f,, thus the stub

length, is varied, only ZI~ is changed appreciably, while Z,,

remaifis practically unchanged. It could be further shown

that both 21, and ZI$ are slightly dependent on p. Because

of these properties, the connection between different ele-

mentary cells gives rise to very small mismatchirtgs, even if

the image impedances are not exactly coincident.

Different beha~ors of a are obtained depending on the

values of p and f.. As previously noted, higher p values
permit wider stopbands. Fig. 5 shows that, as long as ~ is

less than a critical value, a pole of a is located in the first

stopband. As stated in point 5) of the previous discussion,. ,.
this critical value is nothing but f,. As f, is raised above fl,

the first stopband is reduced and the pole of a is located in
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a second stopband. For ~, equal to ~[, no pole of a occurs.

It is now possible to put into evidence the main dif-

ferences between the classical 1PM application to lumped

filters and the present one. In the classical 1PM

1) each cell has a finite number of passbands and

stopbands;

2) all the cells to be cascaded have the same cutoff

frequency and the same location of passbands and

stopbands;

3) the image impedances of adjacent cells are exactly

coincident at all frequencies;

4) the filter behavior can be calculated in terms of

image parameters both in the passband and in the

stopband; in the case of low-pass filters, the latter

extends up to infinity.

In the present application of the 1PM

1)

2)

3)

4)

each cell has an infinite number of passbands and

stopbands;

all the cells have the same fundamental cutoff

frequency ~C, but the higher cutoff frequencies are

generally different;

the image impedances of adjacent cells are not ex-

actly coincident at all frequencies;

the filter behavior can be computed in terms of

image parameters of the constituting cells only in

the (first) passband and in the first part of the

stopband; at higher frequencies, where some cells

are in a passband and some others in a stopband,

the filter must be characterized through the compu-

tation of the scattering parameter Szl.

IV. DESIGN PROCEDURE

The filter structure of Fig. l(a) is built up by cascading a

number of elementary cells individually image-matched in

the passband. In doing this, three types of conditions must

be imposed to the elementary cell parameters in order to

satisfy the cascade constraints, the impedance constraints

(l), and the matching of the cells:

A. Cascadability

In order that Fig. 2(a) could be reduced to Fig. l(a), the

equality must be imposed between the line characteristic

impedances of two cells connected by the line ends and,

similarly, between the stub delay times of two cells con-

nected by the stub ends

~[,21–1 = YI,2, , i=l,2 n,. ... (9a)

‘J$,2Z = 7$,21+1> i=l,2,.. .,il -l. (9b)

B. Impedance Constraints

The application of conditions (1) yields

r$l = RO or r[l= RO rll = r,l (lOa)

for the first stub

(r,,2,//rs,2I+J = r/,21 or rl,2z = r/,21+1

or (r,,2[//r$,21+1) = r~,21+I$
i=l,z, . . . ,n – 1 (lOb)

for the internal stubs, and

rs,2n = ‘l,2n or r/,2n = RO or r,,zn = RO (1OC)

for the last stub.

C. Image-Matching

Cells with equal (or as close as possible) image im-

pedances must be cascaded together. This requires that all

the cells have the same cutoff frequency f< and the same K

fc,t=fc,,+ll i=l,2, . . ..2l–l (ha)

K,= KZ+l, i=l,2, . . . ,2n -1. (llb)

We, therefore, have to impose 7n – 2 conditions on the

2n elementary cells. Since each cell is characterized by four

parameters, the free parameters of the synthesis procedure

are 8n – (7n – 2) = n +2. Among these are the filter cutoff
frequency fc and the impedance level K. When these

quantities have been fixed for the entire filter structure, n

free parameters are left to the design procedure, which is

described thereafter.

As the passband behavior of the filter is automatically

guaranteed by the 1PM itself (apart from mismatching at

the band edges due to resistive terminations), the classical

1P design procedure consists of cascading a number of cells

to obtain the required stopband performance. This proce-

dure is justified by virtue of the following properties.

1) The filter image attenuation a equals the sum of the

individual image attenuations, which are generally known

by tables or graphs.
2) For high attenuations, ISzl I is well approximated by

– a (using dB).

Also in the present case, the filter can be designed on the

basis of the individual a ‘s, plotted in Fig. 5. Since the filter

possesses n degrees of freedom, n transmission zeros out

of n + 1 can be chosen to optimize the stopband behavior.

The design procedure can be carried out automatically

on a computer and consists of the following steps.

1) Choose an initial set of n transmission zeros in the

stopband.

2) Solve the system of equations (9)–(11) to determine

the (n + l)th zero and the filter structure.

3) Analyze the filter to compute IS211.

4) Change the frequency location of the n transmission

zeros according to some optimization strategy and go to

step 2) until the stopband requirements are satisfied.

In the case of low-order filters ( n < 3), the procedure can

be implemented very easily on a desk-top computer and

run in a few seconds. It is worth noting that, contrary to

the classical application of the 1PM, the approximation

IS21[ = - a is not used, but IS21I is computed exactly from

the filter parameters.

We conclude this section with some remarks about the

choice of the value of the impedance level K. As could be

easily seen, the zero frequency attenuation is always zero

even if K + RO. If K = R ~, a maximally flat response is

obtained, but K values different from R ~ may also be

chosen. This possibility is generally excluded for lumped

filters, but, in the present case, it can be usefully adopted
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Fig. 6. Attenuation behavior of a fifth-order filter.

in order to improve the stopband behavior and/or render

the component values more favorable for the practical

construction of the filter. This is paid, of course, in terms

of a higher passband attenuation. It is found that, for

K >0.6 RO, the passband attenuation is generally lower

than 1.5 dB. The possibility of using K values different

from R ~ depends on the characteristics of the distributed

filters which seem to have intrinsically better performances

than lumped-element filters.

For the sake of clarity, the next section illustrates in

detail the features of the synthesis of some fifth-order

filters. These filters correspond to the case of n =2; thus,

they are composed of four elementary cells and have three

transmission zeros. Although the order of a distributed

filter is somewhat arbitrary, we classified these filters by

analogy with elliptic filters [2]; thus, the order M is given

Am (dB) ~
( ?,

34 -,6 1.20

32 -.5

- 1.15

30 -.4
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28 , t , ,
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Fig. 7. Characteristics of optimized RL~ filters versus the third trans-

mission zero ~3.
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Fig. 8. Same as Fig. 7, but for RFR filters.

by2n+l

V. FIFTH-ORDER FILTERS (n = 2)

The attenuation behavior of a fifth-order filter k sche-

matically shown in Fig. 6. The filter possesses three trans-

mission zeros ~1 < ~2 < ~3 which determine the stopband

characteristics in terms of the minimum attenuation A ~

and the relative bandwidth A = B\~c. A ~ is the maximum

passband attenuation.

The filter is composed of 2n = 4 elementary cells. Fol-

lowing the procedure outlined in the previous section, we

choose ~1 and~~~ as the free parameters and apply (9)–(11)

to determine ~2 and the quantities R,,, T,, (i= 1,2, 3), R[l,

T,, (i =1,2) defining the filter structure, An optimization

procedure is then applied to obtain an equiripple stopband
response. In practice, this procedure simply consists in

det~rmining, through (9)–(11), for each given ~~, the value

of jl such that an equiripple response is obtained.

This procedure has been applied to two different classes

of fifth-order filters, corresponding to two different choices

in (1). The first class, which will be denoted as RLL, is

obtained imposing conditions (lc), (la), (la) at the three

connections between the four cells, while the second class,

which will be denoted as RFR, results from the application

of (lc), (lb), (lc). The corresponding microstrip geometries
are shown in the insets of Figs. 9 and 10, respectively.

The results of the optimization procedure for the two

classes are summarized in Figs. 7 and 8, respectively, where

~1, ~, and An are plotted versus ~3. It is seen that, as the

third transmission zero ~q is increased, wider stopbands are

obtained in both cases, at the price of lower stopband

attenuations. The comparison between the two figures

shows the substantially wider stopbands of the RFR filters.

The component elementary cells of RLL filters, in fact,

have p values typically less than unity. As a consequence,

as discussed in Section III, the stopband cannot exceed

unity. The use of condition (lb) in RFR filters, on the

contrary, permits higher p values to be attained so that, as

shown in Fig. 8, this limitation is removed. The peculiar

discontinuous behavior of the bandwidth ~ of RFR filters

is due to the occurrence of additional transmission zeros

for specific values of ;3. These higher order transmission

zeros correspond to stubs being 3A/4 long, and are located

at 3~1, 3~2.

Some low-pass filters designed according to this proce-

dure have been fabricated in a microstrip configuration

using an alumina substrate 0.635 mm thick and with

dielectric permittivity c, = 10.

The theoretical and experimental attenuation of an RLL

filter is shown in Fig. 9 in the frequency range 2-14 GHz.

Theoretical values have been computed through a planar

analysis. The filter has been designed with a cutoff

frequency jC = 6 GHz, and with K =50 Q, corresponding

to the feeding lines’ impedance. It can be noted that the

filter has a very high cutoff rate.

An example of a RFR filter is shown in Fig. 10. This

filter has been designed with a cutoff frequency of 4 GHz
and with an impedance level K = 0.8R o (R o = 50 Q). A

very wide stopband, extending up to - 9.5 GHz, is

observed. It is worth specifying that such wide stopbands

in this type of filter are obtained by virtue of the high p

values of the central cells of the prototypes, thus, of the
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Theoretical (planar anafysis, dashed line) and measured (con-

tinuous line) attenuation of a microstrip RFR filter.

low impedances of the central stub. In a 50-Q system, R.,
.“

values are typically as low as 10–20 Q. In the microstrip

realization of these filters, it is, therefore, convenient to use

parallel stubs, as shown in the inset of Fig. 10. In any case,

as the widths of the stubs are generally not negligible, the

dimensions are to be adjusted using a planar model analy-

sis of the structure [5].

VI. CONCLUSIONS

The direct application of the 1PM to distributed struc-
tures has been suggested in order to overcome some limita-

tions of classical design methods for microwave filters.

Several advantages can be obtained.

1) The 1PM permits the design of noncommensurate

distributed structures, while many classical methods lead to

commensurate structures; thus, they do not utilize all their

degrees of freedom.

2) The 1PM can be applied directly to the microwave

structure without any explicit or implicit use of lumped

prototypes. This avoids errors or approximations in the

transformation of the prototype into the microwave filter.

3) Since both characteristic impedances and delay times

are used in the design, possible technological limitations,

particularly on the characteristic impedances, can be incor-

porated in the design procedure.

4) Filters designed according to the 1PM are internally

matched in the passband; thus, they can be cascaded

together in order to improve their characteristics.

To illustrate the features of the method and demonstrate

its effectiveness, an application to the design of two classes

of low-pass microstrip filters has been shown. Obviously,

many other classes of filters can also be designed by simply

removing or replacing some of the conditions used in the

present application, namely, impedance constraints, cascade

constraints, or the coincidence of the cutoff frequencies of

the elementary cells. This would give additional degrees of

freedom to the design.

It is finally worth observing that the application of the

1PM is made very easy by modern computing facilities. In

the examples presented, the design procedure has been

implemented on a desk-top computer; the design of a

fifth-order low-pass filter requires no more than a few

seconds.

[1]

[2]

[3]

[4]

[5]
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